Linear Algebra [KOMS120301] - 2023/2024

13.1 - Linear Transformation

Dewi Sintiari

Computer Science Study Program Universitas Pendidikan Ganesha

Week 13 (November 2023)

1 / 17 © Dewi Sintiari/CS Undiksha

Matrix Transformation (page 75 of Elementary LA Applications book)

2 / 17 © Dewi Sintiari/CS Undiksha

・ロット (四)・ (日)・ (日)・

Transformation

Definition

If f is a function with domain \mathbb{R}^n and codomain \mathbb{R}^m , then we say that f is a transformation from \mathbb{R}^n to \mathbb{R}^m , or that f maps from \mathbb{R}^n to \mathbb{R}^m .

$f : \mathbb{R}^n \to \mathbb{R}^m$

When m = n, a transformation is often called an operator on \mathbb{R}^n .

Terminology:

- Domain:
- Codomain:

3 / 17 © Dewi Sintiari/CS Undiksha

Transformation arise from linear systems

Given a linear system:

which can be written in matrix notation $\mathbf{w} = A\mathbf{x}$:

$$\begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_m \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

This can be viewed as a transformation that maps a vector $\mathbf{x} \in \mathbb{R}^n$ into the vector $\mathbf{w} \in \mathbb{R}^m$ by multiplying \mathbf{x} on the left by A.

Matrix transformation

The matrix that transform a vector $\mathbf{x} \in \mathbb{R}^n$ into the vector $\mathbf{w} \in \mathbb{R}^m$ is called a matrix transformation (or a matrix operator when m = n), and denoted by:

 $T : \mathbb{R}^n \to \mathbb{R}^m$

Other notations that are often used are:

- $\mathbf{w} = T_A(\mathbf{x})$, which is called multiplication by A; or
- $\mathbf{x} \xrightarrow{T_A} \mathbf{w}$, which is read as T_A maps \mathbf{x} into \mathbf{w} .

5 / 17 (c) Dewi Sintiari/CS Undiksha

Example 1

Given a linear system:

$$w_1 = 2x_1 - 3x_2 + x_3 - 5x_4$$

$$w_2 = 4x_1 + x_2 - 2x_3 + x_4$$

$$w_3 = 5x_1 - x_2 + 4x_3$$

can be expressed in matrix form $\mathbf{w} = A\mathbf{x}$:

$$\begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 1 & -5 \\ 4 & 1 & -2 & 1 \\ 5 & -1 & 4 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

In this case, the matrix A is the matrix that transforms \mathbf{x} into \mathbf{w} .

For example, if
$$\mathbf{x} = \begin{bmatrix} 1 \\ -3 \\ 0 \\ 2 \end{bmatrix}$$
, then
$$\begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = T_A(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} 2 & -3 & 1 & -5 \\ 4 & 1 & -2 & 1 \\ 5 & -1 & 4 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 8 \end{bmatrix}$$

Example 2: zero transformations

If 0 is the $(m \times n)$ zero matrix, then:

$$T_0(\mathbf{x}) = 0\mathbf{x} = \mathbf{0}$$

This means that multiplication by zero maps every vector in \mathbb{R}^n into the zero vector in \mathbb{R}^m .

 T_0 is called the zero transformation from \mathbb{R}^n to \mathbb{R}^m .

7 / 17 © Dewi Sintiari/CS Undiksha

Example 3: identity operators

If *I* is the $(n \times n)$ identity matrix, then:

$$T_I(\mathbf{x}) = I\mathbf{x} = \mathbf{x}$$

so multiplication by I maps every vector in \mathbb{R}^n to itself. We call T_I the identity operator on \mathbb{R}^n .

8 / 17 © Dewi Sintiari/CS Undiksha

Theorem

For every matrix A, the matrix transformation $T_A : \mathbb{R}^n \to \mathbb{R}^m$ has the following properties for all vectors **u** and **v**, and for every scalar k.

- 1. $T_A(0) = 0$
- 2. $T_A(k\mathbf{u}) = kT_A(\mathbf{u})$ (homogenity property)
- 3. $T_A(\mathbf{u} + \mathbf{v}) = T_A(\mathbf{u}) + T_A(\mathbf{v})$
- 4. $T_A(\mathbf{u} \mathbf{v}) = T_A(\mathbf{u}) T_A(\mathbf{v})$

(additivity property)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

\sim Question \sim

- Are there algebraic properties of a transformation T : ℝⁿ → ℝ^m that can be used to determine whether T is a matrix transformation?
- If we discover that a transformation T : ℝⁿ → ℝ^m is a matrix transformation, how can we find a matrix for it?

Linear transformation

Theorem (Linearity conditions)

 $T : \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation if and only if the following relationships hold for all vectors **u** and **v** in \mathbb{R}^n and for every scalar k:

1.
$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$
(additivity property)2. $T(k\mathbf{u}) = kT(\mathbf{u})$ (homogenity property)

A transformation that satisfies the linearity conditions is called a linear transformation

Theorem

Every linear transformation from \mathbb{R}^n to \mathbb{R}^m is a matrix transformation, and conversely, every matrix transformation from \mathbb{R}^n to \mathbb{R}^m is a linear transformation.

10 / 17 © Dewi Sintiari/CS Undiksha

Linear transformation (cont.)

Theorem If $T_A : \mathbb{R}^n \to \mathbb{R}^m$ and $T_B : \mathbb{R}^n \to \mathbb{R}^m$ are matrix transformations, and if $T_A(\mathbf{x}) = T_B(\mathbf{x})$ for every vector $\mathbf{x} \in \mathbb{R}^n$, then A = B.

Proof. $T_A(\mathbf{x}) = T_B(\mathbf{x}) \Leftrightarrow A\mathbf{x} = B\mathbf{x}, \ \forall \mathbf{x} \in \mathbb{R}^n$

Taking $\mathbf{x} = \mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n \in \mathbb{R}^n$ (the standard basis), yields:

$$Ae_j = Be_j$$
 for $j = 1, 2, ..., n$

Since Ae_j is the *j*-th column of *A* and Be_j is the *j*-th column of *B*, this means that the *j*-th column of *A* and the *j*-th column of *B* are the same. Hence A = B.

11 / 17 © Dewi Sintiari/CS Undiksha

Finding standard matrices for matrix transformation

From the previous theorem, we can conclude that:

There is a one-to-one correspondence between $(m \times n)$ matrices and matrix transformations from \mathbb{R}^n to \mathbb{R}^m .

Matrix A is called the standard matrix for a transformation from $T_A : \mathbb{R}^n \to \mathbb{R}^m$.

If $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ are the standard basis vectors for \mathbb{R}^n , then the standard matrix for a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is given by:

$$A = [T(\mathbf{e}_1) \mid T(\mathbf{e}_2) \mid \cdots \mid T(\mathbf{e}_n)]$$

Procedure

Step 1. Find the images of the standard basis vectors $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ for \mathbb{R}^n .

Step 2. Construct the matrix that has the images obtained in Step 1 as its successive columns. This matrix is the standard matrix for the transformation.

Example 1: finding standard matrices

Example

Find the standard matrix for the linear transformation $T:\mathbb{R}^2\to\mathbb{R}^3$ defined by:

$$T\left(\begin{bmatrix}x_1\\x_2\end{bmatrix}\right) = \begin{bmatrix}2x_1 + x_2\\x_1 - 3x_2\\-x_1 + x_2\end{bmatrix}$$

Solution:

Perform Step 1:

$$T(\mathbf{e}_1) = T\left(\begin{bmatrix} 1\\0 \end{bmatrix} \right) = \begin{bmatrix} 2\\1\\-1 \end{bmatrix}$$
 and $T(\mathbf{e}_2) = T\left(\begin{bmatrix} 0\\1 \end{bmatrix} \right) = \begin{bmatrix} 1\\-3\\1 \end{bmatrix}$

So, the standard matrix is:

$$A = [T(\mathbf{e}_1) \mid T(\mathbf{e}_2)] = \begin{bmatrix} 2 & 1 \\ 1 & -3 \\ -1 & 1 \end{bmatrix}$$

$$(\Box) + (\Box) + (\Box)$$

Example 2: computing transformation with standard matrices

Example

Given the standard matrix for transformation $\mathcal{T}:\mathbb{R}^2 \to \mathbb{R}^3$ as follows:

$$A = [T(\mathbf{e}_1) \mid T(\mathbf{e}_2)] = \begin{bmatrix} 2 & 1\\ 1 & -3\\ -1 & 1 \end{bmatrix}$$

Find $T\left(\begin{bmatrix}1\\4\end{bmatrix}\right)$

Solution:

$$T\left(\begin{bmatrix}1\\4\end{bmatrix}
ight) = \begin{bmatrix}2&1\\1&-3\\-1&1\end{bmatrix}\begin{bmatrix}1\\4\end{bmatrix} = \begin{bmatrix}6\\-11\\3\end{bmatrix}$$

14 / 17

© Dewi Sintiari/CS Undiksha

Example 3: finding a standard matrix

Example

Find the standard matrix for the transformation:

$$T(x_1, x_2) = (3x_1 + x_2, 2x_1 - 4x_2)$$

Solution:

So.

Write the transformation in column vectors:

$$T\left(\begin{bmatrix} x_1\\ x_2 \end{bmatrix}\right) = \begin{bmatrix} 3x_1 + x_2\\ 2x_1 - 4x_2 \end{bmatrix} = \begin{bmatrix} 3 & 1\\ 2 & -4 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix}$$
the standard matrix is:
$$\begin{bmatrix} 3 & 1\\ 2 & -2 \end{bmatrix}$$

15 / 17 © Dewi Sintiari/CS Undiksha

Task: group discussion

- 1. Divide yourselves into 5 groups (so, each consists of 4-5 students.
- 2. Each group discusses one of the following topics (read Section 1.9, page 84 93)
 - 2.1 Network Analysis Using Linear Systems
 - 2.2 Design of Traffic Patterns
 - 2.3 A Circuit with One Closed Loop and A Circuit with Three Closed Loops
 - 2.4 Polynomial Interpolation by Gauss-Jordan Elimination
 - 2.5 Approximate Integration

You should get additional materials if the given topic is not sufficient for your presentation (for instance, if you get the topic number 4 and 5).

 Create a video presentation to present the result of your discussion. The duration is about 15-20 minutes, and everyone in the group must present in the same proportion.

to be continued...

17 / 17 © Dewi Sintiari/CS Undiksha

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ