Linear Algebra
 [KOMS120301] - 2023/2024

13.1 - Linear Transformation

Dewi Sintiari

Computer Science Study Program Universitas Pendidikan Ganesha

Week 13 (November 2023)

Matrix Transformation

(page 75 of Elementary LA Applications book)

Transformation

Definition

If f is a function with domain \mathbb{R}^{n} and codomain \mathbb{R}^{m}, then we say that f is a transformation from \mathbb{R}^{n} to \mathbb{R}^{m}, or that f maps from \mathbb{R}^{n} to \mathbb{R}^{m}.

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

When $m=n$, a transformation is often called an operator on \mathbb{R}^{n}.

Terminology:

- Domain:
- Codomain:

Transformation arise from linear systems

Given a linear system:

$$
\begin{array}{cccccc}
w_{1} & =a_{11} x_{1} & +a_{12} x_{2} & +\cdots & + & a_{1 n} x_{n} \\
w_{2} & = & a_{21} x_{1} & +a_{22} x_{2} & + & \cdots \\
\vdots & \vdots & & \vdots & & a_{2 n} x_{n} \\
\vdots & & \vdots & \vdots \\
w_{m} & = & a_{m 1} x_{1} & +a_{m 2} x_{2} & +\cdots & + \\
a_{m n} x_{n}
\end{array}
$$

which can be written in matrix notation $\mathbf{w}=A \mathbf{x}$:

$$
\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{m}
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{11} & a_{12} & \cdots & a_{1 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

This can be viewed as a transformation that maps a vector $\mathbf{x} \in \mathbb{R}^{n}$ into the vector $\mathbf{w} \in \mathbb{R}^{m}$ by multiplying \mathbf{x} on the left by A.

Matrix transformation

The matrix that transform a vector $\mathbf{x} \in \mathbb{R}^{n}$ into the vector $\mathbf{w} \in \mathbb{R}^{m}$ is called a matrix transformation (or a matrix operator when $m=n$), and denoted by:

$$
T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

$$
T_{A}: R^{n} \rightarrow R^{m}
$$

Other notations that are often used are:

- $\mathbf{w}=T_{A}(\mathbf{x})$, which is called multiplication by A; or
- $\mathbf{x} \xrightarrow{T_{A}} \mathbf{w}$, which is read as T_{A} maps \mathbf{x} into \mathbf{w}.

Example 1

Given a linear system:

$$
\begin{aligned}
& w_{1}=2 x_{1}-3 x_{2}+x_{3}-5 x_{4} \\
& w_{2}=4 x_{1}+x_{2}-2 x_{3}+x_{4} \\
& w_{3}=5 x_{1}-x_{2}+4 x_{3}
\end{aligned}
$$

can be expressed in matrix form $\mathbf{w}=A \mathbf{x}$:

$$
\left[\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right]=\left[\begin{array}{cccc}
2 & -3 & 1 & -5 \\
4 & 1 & -2 & 1 \\
5 & -1 & 4 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]
$$

In this case, the matrix A is the matrix that transforms \mathbf{x} into \mathbf{w}.
For example, if $\mathbf{x}=\left[\begin{array}{c}1 \\ -3 \\ 0 \\ 2\end{array}\right]$, then

$$
\left[\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right]=T_{A}(\mathbf{x})=A \mathbf{x}=\left[\begin{array}{cccc}
2 & -3 & 1 & -5 \\
4 & 1 & -2 & 1 \\
5 & -1 & 4 & 0
\end{array}\right]\left[\begin{array}{c}
1 \\
-3 \\
0 \\
2
\end{array}\right]=\left[\begin{array}{l}
1 \\
3 \\
8
\end{array}\right]
$$

Example 2: zero transformations

If 0 is the $(m \times n)$ zero matrix, then:

$$
T_{0}(\mathbf{x})=0 \mathbf{x}=\mathbf{0}
$$

This means that multiplication by zero maps every vector in \mathbb{R}^{n} into the zero vector in \mathbb{R}^{m}.
T_{0} is called the zero transformation from \mathbb{R}^{n} to \mathbb{R}^{m}.

Example 3: identity operators

If I is the $(n \times n)$ identity matrix, then:

$$
T_{l}(\mathbf{x})=/ \mathbf{x}=\mathbf{x}
$$

so multiplication by I maps every vector in \mathbb{R}^{n} to itself. We call $T_{\text {I }}$ the identity operator on \mathbb{R}^{n}.

Theorem

For every matrix A, the matrix transformation $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has the following properties for all vectors \mathbf{u} and \mathbf{v}, and for every scalar k.

$$
\text { 1. } T_{A}(\mathbf{0})=\mathbf{0}
$$

2. $T_{A}(k \mathbf{u})=k T_{A}(\mathbf{u})$
(homogenity property)
3. $T_{A}(\mathbf{u}+\mathbf{v})=T_{A}(\mathbf{u})+T_{A}(\mathbf{v})$
4. $T_{A}(\mathbf{u}-\mathbf{v})=T_{A}(\mathbf{u})-T_{A}(\mathbf{v})$
\sim Question ~

- Are there algebraic properties of a transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ that can be used to determine whether T is a matrix transformation?
- If we discover that a transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a matrix transformation, how can we find a matrix for it?

Linear transformation

Theorem (Linearity conditions)

$T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a matrix transformation if and only if the following relationships hold for all vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{n} and for every scalar k :

$$
\begin{aligned}
& \text { 1. } \quad T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v}) \\
& \text { 2. } \\
& T(k \mathbf{u})=k T(\mathbf{u})
\end{aligned}
$$

(additivity property)
(homogenity property)

A transformation that satisfies the linearity conditions is called a linear transformation

Theorem

Every linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m} is a matrix transformation, and conversely, every matrix transformation from \mathbb{R}^{n} to \mathbb{R}^{m} is a linear transformation.

Linear transformation (cont.)

Theorem
If $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $T_{B}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ are matrix transformations, and if $T_{A}(\mathbf{x})=T_{B}(\mathbf{x})$ for every vector $\mathbf{x} \in \mathbb{R}^{n}$, then $A=B$.

Proof.
$T_{A}(\mathrm{x})=T_{B}(\mathrm{x}) \Leftrightarrow A \mathrm{x}=B \mathrm{x}, \quad \forall \mathrm{x} \in \mathbb{R}^{n}$
Taking $\mathbf{x}=\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n} \in \mathbb{R}^{n}$ (the standard basis), yields:

$$
A \mathbf{e}_{j}=B \mathbf{e}_{j} \text { for } j=1,2, \ldots, n
$$

Since $A \mathbf{e}_{j}$ is the j-th column of A and $B \mathbf{e}_{j}$ is the j-th column of B, this means that the j-th column of A and the j-th column of B are the same. Hence $A=B$.

Finding standard matrices for matrix transformation

From the previous theorem, we can conclude that:
There is a one-to-one correspondence between $(m \times n) m a-$ trices and matrix transformations from \mathbb{R}^{n} to \mathbb{R}^{m}.

Matrix A is called the standard matrix for a transformation from $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

If $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ are the standard basis vectors for \mathbb{R}^{n}, then the standard matrix for a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is given by:

$$
A=\left[T\left(\mathbf{e}_{1}\right)\left|T\left(\mathbf{e}_{2}\right)\right| \cdots \mid T\left(\mathbf{e}_{n}\right)\right]
$$

Procedure

Step 1. Find the images of the standard basis vectors $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ for \mathbb{R}^{n}.
Step 2. Construct the matrix that has the images obtained in Step 1 as its successive columns. This matrix is the standard matrix for the transformation.

Example 1: finding standard matrices

Example

Find the standard matrix for the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by:

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{l}
2 x_{1}+x_{2} \\
x_{1}-3 x_{2} \\
-x_{1}+x_{2}
\end{array}\right]
$$

Solution:

Perform Step 1:

$$
T\left(\mathbf{e}_{1}\right)=T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right] \quad \text { and } \quad T\left(\mathbf{e}_{2}\right)=T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
-3 \\
1
\end{array}\right]
$$

So, the standard matrix is:

$$
A=\left[T\left(\mathbf{e}_{1}\right) \mid T\left(\mathbf{e}_{2}\right)\right]=\left[\begin{array}{cc}
2 & 1 \\
1 & -3 \\
-1 & 1
\end{array}\right]
$$

Example 2: computing transformation with standard matrices

Example

Given the standard matrix for transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ as follows:

$$
A=\left[T\left(\mathbf{e}_{1}\right) \mid T\left(\mathbf{e}_{2}\right)\right]=\left[\begin{array}{cc}
2 & 1 \\
1 & -3 \\
-1 & 1
\end{array}\right]
$$

Find $T\left(\left[\begin{array}{l}1 \\ 4\end{array}\right]\right)$
Solution:

$$
T\left(\left[\begin{array}{l}
1 \\
4
\end{array}\right]\right)=\left[\begin{array}{cc}
2 & 1 \\
1 & -3 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
4
\end{array}\right]=\left[\begin{array}{c}
6 \\
-11 \\
3
\end{array}\right]
$$

Example 3: finding a standard matrix

Example

Find the standard matrix for the transformation:

$$
T\left(x_{1}, x_{2}\right)=\left(3 x_{1}+x_{2}, 2 x_{1}-4 x_{2}\right)
$$

Solution:

Write the transformation in column vectors:

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
3 x_{1}+x_{2} \\
2 x_{1}-4 x_{2}
\end{array}\right]=\left[\begin{array}{cc}
3 & 1 \\
2 & -4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

So, the standard matrix is: $\left[\begin{array}{cc}3 & 1 \\ 2 & -2\end{array}\right]$

Task: group discussion

1. Divide yourselves into 5 groups (so, each consists of 4-5 students.
2. Each group discusses one of the following topics (read Section 1.9, page 84-93)
2.1 Network Analysis Using Linear Systems
2.2 Design of Traffic Patterns
2.3 A Circuit with One Closed Loop and A Circuit with Three Closed Loops
2.4 Polynomial Interpolation by Gauss-Jordan Elimination
2.5 Approximate Integration

You should get additional materials if the given topic is not sufficient for your presentation (for instance, if you get the topic number 4 and 5).
3. Create a video presentation to present the result of your discussion. The duration is about 15-20 minutes, and everyone in the group must present in the same proportion.

to be continued...

(C) Dewi Sintiari/CS Undiksha

